LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2010

CH 3812 / 3801 / 4807 - CHEMICAL KINETICS

Date & Time: 28/04/2010 / 1:00 - 4:00 Dept. No. Max. : 100 Marks

PART A

Answer ALL the questions.

 $(10 \times 2 = 20 \text{ Marks})$

- 1. Explain the observed fact that the reaction between triethylamine and ethyl iodide is more than 2000 times faster in nitrobenzene as solvent as compared to that in n-hexane as solvent.
- 2. At a certain temperature, the half-life for the decomposition of xenon diflouride,

 $XeF_{2(g)} \longrightarrow Xe(g) + Fe(g),$

- is 200 seconds when the initial concentration of XeF₂ is 0.01 M and 66.7 seconds when the initial concentration is 0.03 M. What is the order of the reaction?
- 3. Show that the collision energy of activation will be less than the energy of activation using Arrhenius equation.
- 4. A certain reaction exhibits primary isotopic effect ($k_H/k_D = 3.69$). What is your inference?
- 5. For benzoylation of para nitro aniline, the rate constant is $5.5 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25°C . What is the rate constant for the bezoylation of aniline given the following data: $\rho = -2.781$, $\sigma_{\text{pNO2}} = 0.78$.
- 6. Write the rate law for a reaction catalysed by both general acid and general base in water.
- 7. In a typical Lineweaver-Burk plot for a single substrate enzymatic reaction, 1/rate (y-axis) versus $1/[S]_0$ gave a straight line with slope = 3.65×10^{-5} min and y-intercept = 8.25×10^{-3} 1 min mol⁻¹. Calculate K_M .
- 8. What are Arrhenius and van't Hoff type intermediates?
- 9. What is the significance of Stern-Volmer constant?
- 10. The nuclide Ac-227 undergoes β emission (98.6%) and α -emission (1.4%) in two parallel paths. The overall half life is 21.6 year. Determine the rate constants for the two paths.

PART - B

Answer ANY EIGHT questions

 $(8 \times 5 = 40 \text{ Marks})$

11. The data were obtained for the reaction, $A + B \rightarrow Products$

Initial rate (mol dm ⁻³ s ⁻¹) (disappearance of A)	[A] (moles dm ⁻³)	[B] (moles dm ⁻³)	
0.02	0.5	0.5	
0.08	1.0	0.5	
0.16	1.0	1.0	

- (a) Deduce the rate expression and the order of the reaction. (b) Calculate the rate constant. (3+2)
- 12. Discuss the Lindemann Mechanism of unimolecular reactions for the process where the activation of the reactant molecule A takes place only by the collision with a non-reactant molecule M.
- 13. Explain the influence of hydrostatic pressure on the rate of a reaction in solutions.
- 14. The rate constants for a reaction are $1.6 \times 10^{-3} \text{ s}^{-1}$ and $1.625 \times 10^{-2} \text{ s}^{-1}$ at 10^{0}C and 30^{0}C respectively. Calculate the activation energy. Determine also $\Delta H^{\#}$ for this reaction at 27^{0}C .
- 15. How do the symmetry numbers affect the rate of a reaction?
- 16. Hydrogen iodide gas has a viscosity of 39.66 x 10⁻⁵ poise at 560 K and 101.3 kPa pressure. Calculate the collision diameter of Hydrogen iodide molecules.(M_{HI}=128 g/mol).

- 17. For the reaction H^+ (aq) + $C_6H_5COO^-$ (aq) $\Leftrightarrow C_6H_5COOH$, $k_1 = 3.5 \times 10^{10} \text{ 1 mol}^{-1} \text{ s}^{-1}$ and $k_2 = 2.2 \times 10^6 \text{ s}^{-1}$ and $K_a = 6.6 \times 10^{-5}$ for C_6H_5COOH (aq). Calculate the relaxation time for a 0.01 M solution of benzoic acid.
- 18. In a typical BET plot for the adsorption of $H_2(g)$ on Al_2O_3 (s) at 7.3 K, y-intercept = 3.98 x 10^{-6} mm⁻³ and slope = 1.23 x 10^{-3} mm⁻³. Calculate C and V_m for this system.
- 19. Explain the kinetics of bimolecular quenching reaction and hence derive Stern-Volmer equation.
- 20. Show that Brosnted catalytic law is a form of linear free energy relation.
- 21. The effective rate constant for a gaseous reaction that follows Langumir-Hinshelwood mechanism is $2.5 \times 10^{-4} \text{ s}^{-1}$ at 1.30 kPa and $2.1 \times 10^{-5} \text{ s}^{-1}$ at 12 Pa. Evaluate the rate constant for the activation step in the mechanism.
- 22. Explain flash photolysis.

PART - C

Answer ANY FOUR questions

 $(4 \times 10 = 40 \text{ Marks})$

- 23. a) Compare the rate constants calculated by the ARRT and the Collision Theory for the reaction between two atoms. (8)
 - b) A radioactive element gives 4000 counts per minute at a given time and one hour later 1500 counts per time. What is the half life? (2)
- 24. a) How does the ionic strength of the medium affect the rate of a reaction between ions in solutions? (5)
 - b) The pre-exponential term for a bimolecular gas reaction occurring at 300° C is $7.4 \times 10^{10} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and the energy of activation for this reaction at this temperature is 190 kJ per mole. Determine $\Delta S^{\#}$ for this reaction. How much will $\Delta S^{\#}$ change if the standard state is expressed in terms of molecules dm⁻³. (5)
- 25. Explain the kinetics of single substrate enzymatic reaction. How are kinetic parameters evaluated for the same?
- 26. Explain any two of the following:

(5+5)

- a) Kinetics of consecutive reactions
- b) Relaxation techniques
- c) Kinetics of branched chain explosions
- d) Hammett acidity function
- 27. Explain the kinetics of bimolecular surface reactions with special reference to $H_2(g) + D_2(g) \rightarrow 2HD(g)$ in the presence of a solid catalyst. Assume each reactant gas is dissociatively chemisorbed. Derive the rate law in each case and explain.
- 28. For the oxidation of aliphatic alcohols by bis(trifluoroacetoxy) iodobenzene (TFAIB) in aqueous medium, the following data were obtained: 1) The plots of log [TFAIB] vs time were linear. 2). A plot of $1/k_{obs}$ against 1/[alcohol] is linear with an intercept on the ordinate. 3) The rate of oxidation of alcohols by TFAIB was unaffected by the change in ionic strength of the medium. 4) $\Delta S^{\#}$ is negative. 5) The oxidation of alcohols by TFAIB failed to induce the polymerization of acrylonitrile. (5)

Propose a suitable mechanism to account for the above data and derive the rate law. (5)
